วันเสาร์ที่ 14 ธันวาคม พ.ศ. 2556

ความสัมพันธ์และฟังก์ชัน

คู่อันดับ (Order Pairเป็นการจับคู่สิ่งของโดยถือลำดับเป็นสำคัญ เช่น คู่
อันดับ ab จะเขียนแทนด้วย (ab) เรียก a ว่าเป็นสมาชิกตัวหน้า และเรียก b อ่านเพิ่มเติม
 ว่าเป็นสมาชิกตัวหลัง
(การเท่ากับของคู่อันดับ) (ab) = (c, d) ก็ต่อเมื่อ a = c และ b = d
ผลคูณคาร์ทีเชียน (Cartesian Product) ผลคูณคาร์ทีเซียนของเซต
 A และเซต B คือ เซตของคู่อันดับ (ab) ทั้งหมด โดยที่ a เป็นสมาชิกของเซต 
A และ b เป็นสมาชิกของเซต B
สัญลักษณ์      ผลคูณคาร์ทีเซียนของเซต A และเซต B เขียนแทนด้วย A x B
หรือ เขียนในรูปเซตแบบบอกเงื่อนไขจะได้ว่า 
ความสัมพันธ์ (Relation)r เป็นความสัมพันธ์จาก A ไป B ก็ต่อเมื่อ r เป็นสับเซตของ A x B
โดเมน (Domain) และ เรนจ์ (พิสัย) (Range)
  1. โดเมน (Domain) ของความสัมพันธ์ r คือ เซตที่มีสมาชิกตัวหน้าของทุกคู่
  2. อันดับในความสัมพันธ์ r ใช้สัญลักษณ์แทนด้วย Dr ดังนั้น  Dr = {x | (xy) ε r}
  3.  เรนจ์ (Range) ของความสัมพันธ์ r คือ เซตที่มีสมาชิกตัวหลังของ
  4. ทุกคู่อันดับในความสัมพันธ์ r ใช้สัญลักษณ์แทนด้วย R rดังนั้น
  5.   Rr = {y | (xy) ε r}

หลักเกณฑ์ในการพิจารณาหาโดเมนและเรนจ์ในความสัมพันธ์ r


สัญลักษณ์
         อินเวอร์สของความสัมพันธ์ r เขียนแทนด้วย r-1
ตัวผกผันของความสัมพันธ์ (Inverse of Relation) อินเวอร์สของความสัมพันธ์
 r คือ ความสัมพันธ์ซึ่งเกิดจากการสลับที่ของสมาชิกตัวหน้าและสมาชิกตัวหลัง
ในแต่ละคู่อันดับที่เป็นสมาชิกของ r
เขียน r-1 ในรูปเซตแบบบอกเงื่อนไขได้ดังนี้  r-1 = {(xy) | (yx) ε r}
ถ้า r เป็นความสัมพันธ์จาก A ไป B แล้ว r-1 จะเป็นความสัมพันธ์จาก B ไป A

ฟังก์ชันขั้นบันได
ฟังก์ชัน (Function)  คือ  ความสัมพันธ์  ซึ่งในสองคู่อันดับใด ๆ ของความสัมพันธ์นั้น 
 ถ้ามีสมาชิกตัวหน้าเท่ากันแล้ว  สมาชิกตัวหลังต้องไม่แตกต่างกัน
หรือ
ฟังก์ชัน  คือ  ความสัมพันธ์  ซึ่งในสองคู่อันดับใด ๆ ของความสัมพันธ์นั้น 
 ถ้าสมาชิกตัวหน้าเท่ากัน  สมาชิกตัวหลังต้องเท่ากันด้วย
นั่นคือ   ความสัมพันธ์ f จะเป็นฟังก์ชัน ก็ต่อเมื่อ ถ้า (xy1) ε f และ (xy2) ε f แล้ว  y1 = y2
ถ้าหากว่าความสัมพันธ์ที่กำหนดให้อยู่ในรูปแบบบอกเงื่อนไข
  การตรวจสอบว่าความสัมพันธ์นั้นเป็นฟังก์ชันหรือไม่สามารถทำได้กลายวิธี  
ดังต่อไปนี้
วิธีที่  1      ถ้า  r  เป็นความสัมพันธ์ซึ่งประกอบด้วยคู่อันดับ  (xy)  
และมีเงื่อนไข  r(xy)  แล้ว  ให้นำเงื่อนไข  r(xy)  มาเขียนใหม่โดยเขียน y 
ในรูปของ x และพิจารณาดังนี้
1)  ถ้าแต่ละค่าของ x หาค่า y ได้เพียงค่าเดียว  สรุปว่า r เป็นฟังก์ชัน
2)  ถ้ามีบางค่าของ x ที่ทำให้หาค่า y ได้มากกว่าหนึ่งค่า  สรุปว่า r ไม่เป็นฟังก์ชัน
วิธีที่  2      เมื่อกำหนดความสัมพันธ์ r ซึ่งประกอบด้วยคู่อันดับ (xy) และมีเงื่อนไข  r(xy)
สมมติให้ (xy) ε r และ (xz) ε r  ดังนั้นจะได้เงื่อนไข  r(xy)  และ  r(xz) พิจารณา
1)  ถ้าสามารถแสดงได้ว่า  y = z จะได้ว่า r เป็นฟังก์ชัน
2)  ถ้ากรณีที่มี  y ε z  จะได้ว่า  r  ไม่เป็นฟังก์ชัน
วิธีที่  3       โดยใช้กราฟ
กำหนดกราฟความสัมพันธ์ r ให้ลากเส้นตรงที่ขนานกับแกน Y และให้ตัดกราฟของความสัมพันธ์ rพิจารณา
1)  ถ้าเส้นตรงแต่ละเส้นตัดกราฟของ r ได้เพียงจุดเดียวเท่านั้น จะได้ว่า r เป็นฟังก์ชัน
2)  ถ้ามีเส้นตรงบางเส้นตัดกราฟของ r มากกว่าหนึ่งจุด  จะได้ว่า r จะไม่เป็นฟังก์ชัน
กำหนดให้ f เป็นฟังก์ชัน เรามีข้อตกลงเกี่ยวกับการเขียนสัญลักษณ์ ดังนี้
(xy) ε R  จะเขียนแทนด้วย y = f(x)
เรียก f(x) ว่าค่าของฟังก์ชัน f  ที่ x หรือเรียกว่าภาพฉาย (image) 
ของ x ภายใต้ฟังก์ชัน f
อ่าน f(x) ว่า เอฟของเอ็กซ์ หรือ เอฟที่เอ็กซ์ หรือเรียกสั้นๆ ว่า เอฟเอ็กซ์
เราจะพบการใช้สัญลักษณ์เกี่ยวกับฟังก์ชันอยู่ 2 ลักษณะที่สำคัญคือ 
การเขียน f และ f(x) ซึ่งมีความแตกต่างและการนำไปใช้ดังนี้
1)      การเขียน f จะเป็นการกำหนดชื่อฟังก์ชัน (คล้ายการกำหนดชื่อเซต) 
เช่น กำหนดให้ f เป็นฟังก์ชัน เป็นต้น การเขียน f จะเขียนในรูปเซตแบบ
แจกแจงสมาชิก หรือว่าเซตแบบบอกเงื่อนไขก็ได้ เช่น          
f = {(2, 5), (3, 7), (4, 9)}           หรือ     f = {(xy) | y = 2x + 1}        
2)      การเขียน f(x) จะเป็นการนิยามฟังก์ชัน f ว่ามีเงื่อนไข
 หรือลักษณะอย่างไร กำหนดให้เป็นอย่างไร มักเขียนในรูปนิพจน์ทางคณิตศาสตร์ 
(ประโยคสัญลักษณ์) แสดงความสัมพันธ์ตั้งแต่ 2 ตัวแปรขึ้นไป
 และมักเขียนในรูปสมการ เช่น f(x) = 2x + 1 หรือบางครั้งอาจเขียน
y = 2x + 1 ให้เข้ใจว่า การนิยามฟังก์ชัน f จะเขียนให้อยู่ในรูป y = f(x)
ดังนั้น นักรเยนจะพบเสมอว่า ในโจทย์ปัญหาเกี่ยวกับฟังก์ชันโดยทั่วไป
 มักจะขึ้นต้นในทำนองว่า “กำหนดให้ f เป็นฟังก์ชันซึ่งนิยามว่า f(x) = …”  เป็นต้น
ดังนี้แล้ว พึงระลึกถึงและนำไปใช้ให้ถูกต้องด้วยความเคร่งครัดและระมัดระวัง
พีชคณิตของฟังก์ชัน หรือ การดำเนินการของฟังก์ชัน
 (Algebric Function or Operation of Function)
ฟังก์ชันประกอบ หรือ ฟังก์ชันคอมโพสิต (Composite Function)
ตัวผกผันของฟังก์ชัน หรือ ฟังก์ชันอินเวอร์ส (Inverse of Function)
ฟังก์ชันจากเซตหนึ่งไปยังอีกเซตหนึ่ง
กำหนดให้ A และ B เป็นเซต
f จะเป็นฟังก์ชันจาก A ไป B (function from A to B) ก็ต่อเมื่อ
1)    f เป็นฟังก์ชัน
2)    Df = A
3)    Rf  ε B
สัญลักษณ์      f  เป็นฟังก์ชันจาก A ไป B จะเขียนแทนด้วย
 f : A → B  อ่านว่า f เป็นฟังก์ชันจาก A ไป B
ฟังก์ชันจาก A ไปทั่วถึง B
f จะเป็นฟังก์ชันจาก A ไปทั่วถึง B (function from A onto B) ก็เต่อเมื่อ
1)    f เป็นฟังก์ชัน
2)    Df = A
3)    Rf = B
สัญลักษณ์   f เป็นฟังก์ชันจาก A ไป B จะเขียนแทนด้วย f : AB  หรือ 
f
 : AB อ่านว่า f เป็นฟังก์ชันจาก A ไปทั่วถึง B
ฟังก์ชันหนึ่งต่อหนึ่งจาก A ไป B
ฟังก์ชันหนึ่งต่อหนึ่งจาก A ไปทั่วถึง B
ฟังก์ชันเชิงเส้น (Linear Funtion)
ฟังก์ชันพหุนาม (Polynomial Function)
ฟังก์ชันขั้นบันได (Step Function)
ฟังก์ชันเอกซโพเนนเชียล (Exponential Function)
ฟังก์ชันลอการิทึม (Logarithm Function)
ฟังก์ชันตรีโกณมิติ (Trigonometry Function)
ฟังก์ชันค่าสัมบูรณ์ (Absolute Value Function)

ไม่มีความคิดเห็น:

แสดงความคิดเห็น